Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates
نویسندگان
چکیده
The synergistic interaction between various hemi/cellulolytic enzymes has become more important in order to achieve effective and optimal degradation of complex lignocellulose substrates for biofuel production. This study investigated the synergistic effect of three enzymes endoglucanase (EngE), mannanase (ManA) and xylanase (XynA) on the degradation of corn stalk, grass, and pineapple fruit pulp and determined the optimal degree of synergy between combinations of these enzymes. It was established that EngE was essential for degradation of all of the substrates, while the hemicellulases were able to contribute in a synergistic fashion to increase the activity on these substrates. Maximum specific activity and degree of synergy on the corn stalk and grass was found with EngE:XynA in a ratio of 75:25%, with a specific activity of 41.1 U/mg protein and a degree of synergy of 6.3 for corn stalk, and 44.1 U/mg protein and 3.4 for grass, respectively. The pineapple fruit pulp was optimally digested using a ManA:EngE combination in a 50:50% ratio; the specific activity and degree of synergy achieved were 52.4 U/mg protein and 2.7, respectively. This study highlights the importance of hemicellulases for the synergistic degradation of complex lignocellulose. The inclusion of a mannanase in an enzyme consortium for biomass degradation should be examined further as this study suggests that it may play an important, although mostly overlooked, role in the synergistic saccharification of lignocellulose.
منابع مشابه
Lime pretreatment of sugar beet pulp and evaluation of synergy between ArfA, ManA and XynA from Clostridium cellulovorans on the pretreated substrate
Sugar beet pulp (SBP) is a waste product from the sugar beet industry and could be used as a potential biomass feedstock for second generation biofuel technology. Pretreatment of SBP with 'slake lime' (calcium hydroxide) was investigated using a 2(3) factorial design and the factors examined included lime loading, temperature and time. The pretreatment was evaluated for its ability to enhance e...
متن کاملDegradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA.
Clostridium cellulovorans, an anaerobic bacterium, degrades native substrates efficiently by producing an extracellular enzyme complex called the cellulosome. All cellulosomal enzyme subunits contain dockerin domains that can bind to hydrophobic domains termed cohesins which are repeated nine times in CbpA, the nonenzymatic scaffolding protein of C. cellulovorans cellulosomes. In this study, th...
متن کاملRegulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans.
The regulation of expression of the genes encoding the cellulases and hemicellulases of Clostridium cellulovorans was studied at the mRNA level with cells grown under various culture conditions. A basic pattern of gene expression and of relative expression levels was obtained from cells grown in media containing poly-, di- or monomeric sugars. The cellulase (cbpA and engE) and hemicellulase (xy...
متن کاملTranscription of Clostridium cellulovorans cellulosomal cellulase and hemicellulase genes.
Transcription of the cellulosomal cellulase/hemicellulase genes of Clostridium cellulovorans has been investigated by Northern blot, reverse transcriptase PCR (RT-PCR), primer extension, and S1 nuclease analysis. Northern hybridizations revealed that the cellulosomal cbpA gene cluster is transcribed as polycistronic mRNAs of 8 and 12 kb. The 8-kb mRNA coded for cbpA and exgS, and the 12-kb mRNA...
متن کاملSynergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation.
Plant cell walls are comprised of cellulose and hemicellulose and other polymers that are intertwined, and this complex structure presents a barrier to degradation by pure cellulases or hemicellulases. In this study, we determined the synergistic effects on corn cell wall degradation by the action of cellulosomal xylanase XynA and cellulosomal cellulases from Clostridium cellulovorans. XynA min...
متن کامل